NASA SBIR/STTR Technologies

Proposal No. X3.01-9527

Hydrogen Generator by Methane Pyrolysis with Carbon Capture

PI: Jeff Johnson

Orbital Technologies Corporation- Madison WI

Identification and Significance of Innovation

The primary innovations of the H₂Gen system are:

- 1. The methane pyrolysis reactor is specifically designed such that it is not dependant on high single-pass efficiencies (which will make the system robust),
- 2. It incorporates batch processing modes, cleaning cycles to regenerate the pyrolysis reactor catalyst and remove carbon, and a carbon capture device (which makes it reusable), and,
- 3. It uses palladium membrane technology to separate the hydrogen from the methane stream (which makes the $\rm H_2$ effluent 99.999% pure).

Expected TRL Range at the end of Contract: 3

Technical Objectives and Work Plan

The Phase I effort primarily consisted of the fabricating several benchtop test setups to validate the performance of the primary components of the H_2 Gen system.

Specific technical objectives that were met included:

- Fabricate and test methane pyrolysis reactor for efficiency and ability to operate after catalyst regeneration
- Conduct gas analysis on reactor effluent
- Fabricate and test carbon removal mechanism
- Fabricate and test carbon capture device
- Performance test COTS palladium membrane hydrogen separator
- Develop breadboard conceptual design for Phase II

NASA Applications

When combined with a Sabatier system, the H_2 Gen provides near complete closure of the water loop, an extremely important step towards creating a water-based economy for long-duration manned spaceflight.

Non-NASA Applications

The H_2 Gen system will provide the same role of closing the water loop for commercial aerospace companies such as Bigelow Aerospace as it would for NASA.

Firm Contacts

Jeff Johnson, ECLSS Project Manager, johnsonj@orbitec.com